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Spinodal decomposition of two-dimensional fluid mixtures: A spectral analysis of droplet growth

H. Furukawa
Faculty of Education, Yamaguchi University, Yamaguchi 753-8513, Japan

~Received 7 June 1999!

The spinodal decomposition of two-dimensional fluid mixture is studied by numerical simulation. For the
high viscous fluid mixture it has not been evident whether the interfacial tension is relevant to the droplet
growth or not. A length scaleR defined by the structure function extracting the effect of the long wavelength
mode justifies a rapid growth close toR;t, but the length scale energetically defined reveals a much slower
growthR;t0.5, wheret is time. This discrepancy represents the violation of the dynamical scaling with single
length scale. The slow gowth of the length scale is attributed to the accumulation of the number of isolated
droplets in phase separating state, whereas the rapid growth represents the relevance of the surface tension as
the driving force in two dimensions. For a low viscous fluid mixture the dynamical scaling is a good assump-
tion with the growth lawR;t2/3 up to a very large Reynolds number Re;1500, which is the limit in the
present simulation.

PACS number~s!: 47.11.1j, 64.75.1g, 64.60.Cn, 64.60.My
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I. INTRODUCTION
When a fluid mixture is suddenly quenched into a th

modynamically unstable state the phase separation t
place~see Ref.@1# for reviews!. If properties of two phases
are nearly symmetric, the two phases mutually interconn
Then Siggia@2# found that the interfacial tension is a re
evant driving force for the droplet growth. The pressure d
ference originating from the interfacial tension and irregu
interfacial shape induces convective fluid motions. Such m
tions accelerate the droplet growth. Based on the dynam
scaling hypothesis Siggia obtained a linear growth law
dropletR;t for a viscous fluid mixture, whereR and t are,
respectively, the length scale and the time elapsing after
quench. The present author then pointed out that the R
nolds number Re increases indefinitely as time proce
@3,4#. Therefore, the dissipation becomes irrelevant as
friction to the fluid motion in a long time limit, and a rel
evant friction to the fluid motion must be the inertia whic
decelerates the fluid motion@5#. We then obtain the growth
law R;t2/3 in the case of high Reynolds number@3#. Even in
this case the dissipation is still needed for droplets to gr
irreversibly @6#.

The Reynolds number is defined by

Re5
inertial term

dissipation term
;rh21RU. ~1!

HereU is a velocity of fluid in a scale lengthR, andr andh
are mass density and shear viscosity, respectively. The c
over fromR;t to R;t2/3 must occur at Re51. However, if
h/r is very large, we have a regime of small Re with largeR.
Such a regime actually exists, for instance, for polym
blends, and is treated as an actual late stage of the p
separation. We extract such a high viscosity state by set
the mass density zero or the viscosity infinity as usual,
we do not discuss a crossover between the high visco
state and the low viscosity state.

Throughout this paper, for the sake of simplicity, we oft
do not represent physical quantities such as the shear vis
ity h, the mass densityr and the interfacial tensions, in the
PRE 611063-651X/2000/61~2!/1423~9!/$15.00
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growth law. Explicitly the above two growth laws are, r
spectively, written asR;(s/h)t andR;(s/r)1/3t2/3.

These growth laws in some cases are examined num
cally and experimentally, but the two-dimensional case
still under controversy. One of sources of the controversy
the growth mechanism of the high viscous fluid mixture. T
linear growth lawR;t is explained by the interfacial tensio
and the energy dissipation which play roles respectively o
driving force and a friction to the fluid motion. There is a
idea that the interfacial tension is irrelevant in two dime
sions, and the growth lawR;t does not hold in two dimen-
sions@7#. In fact there is no clear evidence for the observ
tion of the linear growth law in two dimensions, bu
nonlinear growth laws seem to be suitable even for the s
metric quench of high viscous fluid mixtures in two dime
sions@8#. It is, however, to be noted that we cannot conclu
that the interfacial tension is not relevant in two dimensio
since other systems reveal clear evidence for the relevanc
the interfacial tension in two dimensions. That is, the la
stage of the coarsening process in nonhydrodynamic sys
is governed by the growth lawR;t1/3 for conserved order
parameter@9# and byR;t1/2 for nonconserved order param
eter @10#. These growth laws are nothing but originatin
from the interfacial tension. Furthermore the low visco
fluid mixture in two dimensions is known to exhibit a grow
law R;t2/3 @11# for which the interfacial tension is the driv
ing force and the inertia act as the friction to the fluid m
tion. This is also evidence for the relevance of the interfac
tension in two dimensions.

The second controversy is about the limit of the Reyno
number in the coarsening process. Let the length scalR
grows as ta . Then the Reynolds number grows as R
;t2a21 @3#. Therefore, Re increases indefinitely, ifa.1/2.
Recently, Grant and Elder@12# presented a doubt to the in
definite increase in the Reynolds number. They conside
that the Reynolds number would not exceed a value abou
or 100, so that the final value of the growth exponenta may
not exceed 1/2 even in low viscous fluid mixture. The st
of a high Reynolds number is turbulent. Grant and Eld
considered that in a turbulent state the grown droplets wo
1423 ©2000 The American Physical Society
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1424 PRE 61H. FURUKAWA
be destroyed into pieces yielding many isolated spher
droplets just like stirred salad dressing@13#. On the contrary
to this suspicion a preceding numerical simulation by
lattice Boltzmann gas@14# revealed an opposite feature
the phase-separating domain morphologies. Namely, m
isolated spherical droplets are created not in the low visc
fluid mixture but in the high viscous fluid mixtures, exhibi
ing a break-down of the dynamical scaling@15#. On the con-
trary, the low viscous fluid mixture keeps a mutually inte
connected domain structure. Therefore, the understandin
the coarsening mechanism of two-dimensional fluid mixt
is not satisfactory, yet.

In this paper we present a numerical simulation of ph
separation of two-dimensional low and high viscous flu
mixtures, in order to examine above mentioned proble
using variously defined length scales. We then obtain
following conclusions, which are more quantitative than
previous numerical simulations.~1! Even for the high vis-
cous fluid mixture the curvature driven growth lawR;t
seems to gorvern the growth of larger droplets.~2! A seem-
ingly delayed domain growth can be explained by consid
ing an accumulation of number of isolated droplets and
violation of dynamical scaling with single length scale.~3!
For a low viscous fluid mixture the length scale grows
R;t2/3 up to extremely large Reynolds number larger th
about 1500, which is the limit of the ability of the prese
numerical simulation. In the next section the model will
presented. Length scales are defined in several ways. In
III numerical results are given and analyzed. In Sec. IV c
cluding remarks are presented.

II. MODEL AND PRELIMINARIES

We use the following model, which is a kind of so-calle
modelH @16#:

]c

]t
52“•vc1¹2m, ~2!

]f

]t
52“•vf, ~3!

r
]v

]t
52r~v•“ !v1h¹2v2f“mf2c“m, ~4!

wherec is the order parameter which takes the value 1 or21
in equilibrium, f is the total material density~number den-
sity!, v is the velocity field of fluid,r is the mass density, an
h is the shear viscosity.m andmf are the chemical potential
and are given by functional derivatives of the free energyF.
The basic form of the chemical potentials are given by

m5
dF

dc
52

1

2
¹2c2~12c2!c, ~5!

mf5
dF

df
5x0

21~f2f0!, ~6!

where x0 is the compressibility and is chosen so that t
system may be kept to be incompressible. Equation~5! can
be amplified if necessary as
al
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m→s* m. ~7!

This makes the interfacial tensions change into

s→s* s, ~8!

since the change in the interfacial tension simply cor
sponds to the change in the energy scale. The positive
stants* is a reduced interfacial tension.

The above set of equations are solved numerically und
suitably random initial condition in discrete space of si
102431024. Two different cases are studied. One is a v
viscous case, where we neglect both the left hand side
the first term on the right hand side of Eq.~4!. The other is a
very low viscous case, where we seth50.01. The estimated
final Reynolds number is more than 1500.

We calculated variously defined length scalesR’s. Here,
we shall mention them.

The free energy densityf associated to the order param
eterc is written asf 5 f K1 f P , where

f K[
1

4
u“cu2, ~9!

f P[
1

4
~12c2!2. ~10!

f K and f P are analogous to the kinetic energy and the pot
tial energy of the mechanics, respectively. It can be sho
that the average of two densities are equal to each other i
interfaces of domains are clearly formed and the system
comes locally in equilibrium state~see Appendix A!:

f K~ t !; f P~ t !. ~11!

If the system is in a local equilibrium state, Eqs.~9! and
~10! have nonvanishing value only at interfacial regions a
as a rule, are proportional to the average interfacial size
unit volumeA:

^ f K~ t !&;A, ~12!

^ f P~ t !&;A. ~13!

Geometrically A can be given by directly measuring th
length of the interfaces of domains, i.e., by counting latt
points of the discrete space wherec(r )c(r 8),0. Herer and
r 8 indicate nearest-neighboring lattice points. For a sin
droplet with a radiusR, we find that

A;
Rd21

Rd
;R21. ~14!

Hered is the spatial dimensionality. If the dynamical scalin
holds,A21 is the length scale of the system just as Eq.~14!.

We calculate energieŝf K& and^ f P&, and the average in
terfacial sizeA, independently. Then, we relate these quan
ties to respective length scalesR’s:

R;^ f K~ t !&21, ~15!

R;^ f P~ t !&21, ~16!
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R;A21. ~17!

These different length scales becomes equivalent to e
other if the system is in a local equilibrium state. Therefo
the local equilibrium state of the system~the late stage of the
phase separation! can be justified by comparing these thr
different length scales with each other.

The other method of evaluating the length scale is to
the structure function:

R5S E Sk~ t !kmdk

E Sk~ t !dk
D 21/m

, ~18!

whereSk(t) is the structure function

Sk~ t !5^uck~ t !u2&, ~19!

and ck(t) the fourier component of the order parameterc.
The structure function may have asymptotic forms

Sk~ t !;ku ~k→0!, ~20!

Sk~ t !;k2d21 ~k→`!, ~21!

whereu54 for solid andu52 for fluid @17#. Therefore, ap-
propriate values of the powerm may be 12u,m,d11.
However, we have extended the range ofm by introducing a
cutoff parameter for thek integration in Eq.~18!. The length
scale defined by Eq.~18! should not depend on the valuem if
the dynamical scaling holds:Sk(t)5R(t)2S̃@kR(t)#. That is,
all length scales defined by Eqs.~15!–~18! should be the
same if the dynamical scaling holds.

If the dynamical scaling does not hold, then the leng
scale defined by Eq.~18! does not coincide with others, be
cause such a definition as Eq.~18! gives them dependence
on R: The behavior of modes with smaller wave number
characterized by smallerm,0, whereas that with large
wave number is characterized by largerm.0. Thus this pro-
vides with a kind of a spectral analysis of growth exponena
(R;ta).

III. NUMERICAL RESULTS

A. High viscous case

We numerically solved Eqs.~2!–~6! in the limit of zero
Reynolds number~Re50!. This case corresponds to settin
r50. By neglecting the inertial terms in Eq.~4! we have

h¹2v5f“mf1c“m. ~22!

This equation is solved forv using the fast Fourier transform
@18#. The velocityv thus solved is substituted into Eqs.~2!
and~3!. We reduced the amplitude of the chemical poten
m and the interfacial tensions by settings* 51/4 @see Eqs.
~7! and~8!#. We used discrete space of size 102431024, and
then four different runs are averaged. We used a simple
ler method to solve the discretized equation. The disc
time Dt is 0.02<Dt<0.05. Numerical results are insensitiv
to the value ofDt.
ch
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We observed the same nonscaling morphology~see Fig.
1! as those of previous simulations@14,15#. In Fig. 2 three
different length scales by Eqs.~15!, ~16!, and~17! are com-
pared. Each length scale is scaled by its own final value.
find that these three length scales nicely coincide with e
other. Notice that such a coincidence does not guarantee
validity of the dynamical scaling but only means that t
system is in a local equilibrium state. The most striking fe
ture found from Fig. 2 is that the length scaleR thus defined
exhibits a small growth exponent near 1/2. We cannot fi
any evidence for the validity of the curvature~or interfacial
tension! driven and dissipation controlled droplet growth la
R;t. However, we cannot conclude that the curvatu
driven droplet growth is absent in two-dimensional visco
fluid mixture, since the dynamical scaling with a sing
length scale is violated in this case.

In Fig. 3 we present the length scale defined by Eq.~18!
as a function oft for several values ofm. In Fig. 4 the growth

FIG. 1. Phase separation patterns in case of high visco
where the Reynolds number is set zero. The system size
102431024, but only 1282 points are displayed. The simulatio
time of each pattern is 100n, with n being the number shown on th
pattern.

FIG. 2. Time dependences of length scales~15!–~17! in case of
high viscosity. Kinetic, potential, and geometry indicate, resp
tively, Eqs.~15!, ~16!, and~17!. The slope of a straight line is given
by the least square method using the data points in the ra
marked by a gray fat line. A weight function inversely proportion
to the density of data points is used.



d
ge
lts

te
ng
h
n

her
-
a-
ig.
n:
d
n
s-

gth
he
re

cous
nd
by
-
e.

ious
uch
th

-
son
he

of
re

of
or-

ws
f

the

t

e

th

a

d.
2

.

1426 PRE 61H. FURUKAWA
exponents are shown as a function ofm. To calculate the
length scale using Eq.~18! we used a cutoff for thek inte-
gration. The cutoff iskc55kmax with kmax being the wave
number at whichSk(t) has a peak. In Fig. 4 we compare
two cases with the cutoff and without the cutoff. For lar
positive values ofm these two cases give different resu
from each other. This is becauseSk at largek is amplified for
large m and dominates the integration. But for a discre
model, the amplification of small scale structure is meani
less. This is the reason why we introduced a cutoff. T
length scaleR seems to have the rapid growth compone

FIG. 3. Time dependence of length scale~18! in the case of high
viscosity for several values of powerm. Time is slightly shifted,
t/t0→t/t01c, wheret0 is the first time of the output of data. Th
shift parameterc and the growth exponenta are determined by the
least square method. A weight function inversely proportional to
density of data points is used. Each length scale at timet is given by
Eq. ~18! where the summation overk is cut off atk55kmax. Here
kmax is the peak position of the structure function.

FIG. 4. The growth exponenta, corresponding to Fig. 3 as
function of m. For closed circles the summation overk in Eq. ~18!
is cut off atk55kmax, whereas for open circles no cutoff is use
The horizontal line indicates the growth exponent value of Fig.
-
e
t

R;t. Such a rapid growth cannot be detected by ot
length scales. The strongm dependence of the growth expo
nenta, varying from about 0.5 to about 1, shows the viol
tion of the dynamical scaling with single length scale. In F
5 we show the scaling plot of the structure functio
R22S(k) as a function ofkR. Here the length scale is define
by Eq. ~18! with m50. Even except near the peak positio
where the fluctuation is intrinsically large, the scaling a
sumption seems to be poorly satisfied.

Here we consider the reason why two types of len
scale exhibit very different growth behaviors. Due to t
poor connectivity in two dimensions, isolated droplets a
created in the process of the phase separation. In a vis
fluid an isolated droplet rapidly loses its kinetic energy a
then comoves with an outer large droplet which is driven
the interfacial tension~see Fig. 1!. Therefore, once an iso
lated droplet is created such a droplet lives for a long tim
Therefore, the number of isolated droplets created at var
times accumulates. We presented a primitive idea that s
an accumulation may lead to an intermittent droplet grow
changing the growth exponent@19#.

Although it is difficult to explain quantitatively the modi
fication of the growth exponent we can understand the rea
why the modification of the growth exponent occurs by t
accumulation of the isolated droplets. Let the length scale
largest droplets beRO . It is assumed that largest droplets a
interconnected. Therefore, theRO can be assumed to grow
fast as;t. The successive accumulation of the number
isolated droplets gives rise to a non-self-similar droplet m
phology. The lower bound of the length scaleRo is the av-
erage size of initially created isolated droplets, which gro
as;ta with a51/2 if the thermal fluctuation is effective. I
the thermal fluctuation is not effective, thena is smaller than
that. Let us consider a simple geometric length scale~17!.
The total interfacial size should be larger thanRO

d21 because
of the successive accumulation of isolated droplets. Let
total size of the interface beRO

D21 , with d,D,d11. The
interfacial size per unit volume is given byRO

D21/RO
d 5 RO

2I ,
where I 5d112D. For example, ifD5d11/2, then we
have I 51/2. We then observeRO

1/2 (5RO
I ) as the simple

geometric length scale~17!. Therefore, even if the larges

e

.

FIG. 5. Scaling plot of the structure functionS(k) in case of
high viscosity. The length scaleR is defined by Eq.~18! with m
'0. The symbols indicates data at timest ’s of the same unit as Fig
1.
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PRE 61 1427SPINODAL DECOMPOSITION OF TWO-DIMENSIONAL . . .
droplets grow rapidly asRO;t, the simple geometric length
scale defined by Eq.~17! behaves asR;t1/2 (5t I).

The accumulation of isolated droplets would occur mo
hardly in three dimensions than in two dimensions, beca
of a rich connectivity among droplets in three dimensio
Therefore the dynamical scaling with single length scale m
be more appropriate for the three dimensional viscous fl
mixture @20#.

B. Low viscous case

For a low viscous case, we setr51 andh5n50.01. The
reduced interfacial tension is set ass* 51. We numerically
solved Eqs. ~2!–~6! in discrete space-time of a siz
102431024, and then four different runs are averaged.
used a simple Euler method to solve discretized equati
The discrete time intervalDt is 0.0125<Dt<0.025. Nu-
merical results are insensitive to the value ofDt. The same
analyses as those for the high viscous case are shown in
6–8. In Fig. 6 the coarsening patterns are shown. In Fig
the time-dependences of length scales defined by Eqs.~15!–
~17! are shown. Three length scales are scaled by their
final values. The growths of these length scales are cha

FIG. 6. Phase separation patterns in case of low viscosity.
system size is 102431024, but only 1282 points are displayed. The
simulation time of each pattern is 50n, with n being the number
shown on the pattern.

FIG. 7. Time dependences of length scales~15!–~17! in case of
low viscosity ~see the caption of Fig. 2 for the explanation!.
e
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e
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gs.
7
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terized by a single growth lawR;t2/3 as expected. It is also
found that the system is in a local equilibrium state. In Fig
the length scale defined by using the structure function~18!,
is shown for several values ofm as functions oft. In Fig. 9
the growth exponent thus obtained is shown as a function
m. It can be found that the growth of the length scale har
depends onm. This means that the scaling holds in low vi
cous case. The growth exponent in Fig. 9 coincides with t
in Fig. 7: all length scales obey the same growth lawR
;t2/3. In Fig. 10 we show the scaling plot of the structu
function: R22S(k,t) as a function ofkR. Here the length
scale is defined by Eq.~18! with m'0. The scaling assump
tion seems to be better satisfied than the high viscosity c
of Fig. 5.

We evaluated the final value of the Reynolds number
~1!. Herer51 andh50.01 in the present simulation.U is an
instantaneous velocity of fluid, which may not be smal

e

FIG. 8. Time dependence of length scale~18! in case of low
viscosity ~see the caption of Fig. 3 for the explanation!.

FIG. 9. The growth exponenta, corresponding to Fig. 8 as
function of m ~see the caption of Fig. 4 for the explanation!. The
horizontal line indicates the growth exponent value of Fig. 7.
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1428 PRE 61H. FURUKAWA
thandR(t)/dt;R/t, becausedR/dt is not a true velocity of
fluid, but averaged one. Therefore, we may have

Re.
R2

nt
. ~23!

In our simulation the size of a cell of the discretized spac
set to be 1, and the¹2v is calculated simply as

¹2v→v~x11,y!1v~x21,y!1v~x,y11!1v~x,y21!

24v~x,y!,

wherex and y indicate positions in the discrete space. T
unit of time is 1. The maximum computation time is 200
and the final average droplet size is about 170. By subst
ing approximate valuesnt;20 andR;170, we find that the
final Reynolds number calculated by Eq.~23! is

Re;1500. ~24!

This value is about 15 times larger than the critical va
predicted by Grant and Elder@12#.

Grant and Elder criticized that the discretized model m
not give a correct value of the Reynolds number. They s
gested that the minimum spatial length scale, i.e., the lat
spacing, should be relevant to the Reynolds number. H
ever, it was not evident how the microscopic scale is relev
to the evaluation of the macroscopic Reynolds number. H
we shall show that the microscopic length scale is not
evant to the evaluation of the Reynolds number if we us
suitable phenomenological model. This can be done by fi
ing out how microscopic scales comes out in the pheno
enological model. In the phenomenological hydrodynam
equation~4! a microscopic quantityh is treated as a param
eter. As is well known in standard statistical mechanics, s
a parameter, which puts implicit microscopic space-ti
scales into the model, is produced by averaging out the
croscopic degrees of freedom of the mechanical equat
Therefore, concerning to the phenomenological equation
fine space-time region for averaged-out microscopic mo
is necessary and any macroscopic motion is free from s

FIG. 10. Scaling plot of the structure functionS(k) in case of
low viscosity. The symbols indicates data at timest ’s of the same
unit as Fig. 6.
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microscopic scales. As an example, consider a linearli
hydrodynamic equation and assume to make a suita
coarse graining in space. It is evident that a coarse-gra
cell size is not relevant to the fluid motion with a length sca
larger than the coarse-grained length~this means that the
Reynolds number should be independent of the coa
grained cell size!. Since the Reynolds number Re;R2/(nt)
contains a microscopic quantityn[h/r, it may exhibit small
scales. For the present simulation we have Re;(R/r 0)1/2 us-
ing R;t2/3. Herer 0 is a constant representing a length sca
and takes a very small value;1024 in the late stage of the
present simulation. This must be a source of the criticism
Grant and Elder. But such a small length scale should no
attributed to the discreteness of the macroscopic model.
more important to find out whether macroscopic fluid m
tions are closed within the discrete model or not. If motio
are closed within the discrete model, then the Reynolds n
ber can be safely evaluated by Eqs.~1! or ~23!. For this
purpose we shall examine the length scale where the en
is dissipated and the corresponding fluid motion is frozen

We first consider the energy dissipation under an extre
condition. We assume that the kinetic energy supplied fr
the surface tension at the length scaleR is dissipated only at
a small scalel, where the dissipation would dominate th
inertial motion.l can be evaluated by balancing the ener
dissipation with the energy supply from the surface tensi
The supplied surface energy iss/(tR) per unit volume and
unit time. The energy dissipation per unit volume per u
time is 0.5hu“vu2;h/t2 . Heret;l2/n is the characteristic
time of the dissipative motion at the length scalel. The
balance between the energy supply and the energy diss
tion gives s/(tR);h/t2, which gives t2;thR/s or l4

;rn3Rt/s. Using the Reynolds number Re;R2/(nt), and
the growth lawR;(s/r)1/3t2/3, we find that

l;S r

s D 3/8

n3/4R5/8 ~25!

;~Re!23/4R. ~26!

In the final stage of the present simulation we havel;0.7.
This value is somewhat smaller than the lattice spacing 1
the minimum length scale is relevant to the evaluation of
Reynolds number, Eq.~26! should give Re<R4/3 (l>1).
Even under this restriction we have a Reynolds num
Re;1000 in the final stage of the simulation, which is st
large. If we use larger kinetic viscosityn50.1, the final Rey-
nolds number is about 150, and the length scalel;4. Even
in this case the coarseing process is almost the same as
for n50.01, in the inertial range~Re.1!. We therefore con-
sider that the macroscopic behavior is hardly affected by
microscopic detailes of the model equation at least in
present simulation.

Equation ~25! or ~26! is an extreme case. Even in th
inertial range~Re.1! the energy is dissipated. As a zero
approximation the hydrodynamic equation can be written
rdv/dt;F, where F represents the last two terms on th
right hand side of the hydrodynamic equation~4!. Substitut-
ing the solution of this approximate equation,v;Ft/r, into
the second term on the right hand side of Eq.~4! we can
evaluate the energy dissipation in the inertial range. This
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be conveniently done in the Fourier space. Letkl be the
upper bound of the wave number of the energy dissipat
Then the energy dissipation can be evaluated
(k,kl

hk2^uFku2&t2r22 . Since the force termF is not a con-

served quantity and is of the order of (s/R)/R, we find that
^uFku2&;^uF0u2&;s2R22 (5s2Rd24). Then the energy dis
sipation in the inertial range is evaluated ash(stkl

2 )2/(rR)2

in two dimensions. By balancing thus evaluated energy
sipation with the energy supplys/(Rt) and using the rela-
tions R;(s/r)1/3t2/3 and Re;R2/(nt) we obtain@21#

1

kl

;S r

s D 1/8

n1/4R7/8 ~27!

;~Re!21/4R. ~28!

In the final stage of the present simulation we obtainkl

;1/30. The corresponding value of the length scale is lar
than the lattice spacing 1. It is also larger thanl, as expected

From the above evaluations we may conclude that
energy dissipation is done in scales larger than or com
rable to the lattice spacing at least in the late stage of
present simulation. Nevertheless, we did not observe
symptom of the break up of growing droplets nor the slo
ing down of the droplet growth. Grant and Elder@12# sup-
posed that the droplet would break up into pieces at la
Reynolds number for which the system becomes turbul
This is true if the fluid is externally forced to a turbulent sta
@22#. However, in the present case the turbulence is s
induced due to the release of the interfacial energy. T
present author once examined the stability of the dro
growth in such a self-induced turbulent state@6#. Following
this examination droplets are not destroyed even by the
bulent motion, for two reasons. One reason is that the tu
lent kinetic energy is not supplied externally as ordinary h
drodynamic turbulence is, but supplied by the reduction
the interfacial size@23#. Therefore, this energy is not larg
enough to redestroy droplets. The second reason is tha
characteristic time of the energy dissipation in the turbul
state is of the same order as that of the droplet grow
Therefore, the kinetic energy of the turbulent motion is n
accumulated during the growth of the droplet. If, howev
droplet interfaces are deformed or if droplets are redestro
due to the turbulent motion, then the growth law would
modified from R;t2/3 to R;t3/5 @R;(sh/r2)1/5t3/5# @24#.
But the growth law observed for the low viscous fluid mi
ture is nott3/5 type but t2/3 type. We examined this in the
following way. If the droplet growth is not liket2/3, then a
dimensional analysis provides with another growth law w
an arbitrary growth exponenta @24#:

R;s2a21ra21h223ata. ~29!

We define a reduced length scaleR*

R* 5
R

s2a21ra21h223a
. ~30!

R* does not depend ons, h, or r, if a correct exponenta is
given. We compared two different runs changing the inter
cial tension according to Eq.~7! or ~8!, i.e., one run fors*
n.
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50.25 withh50.01 andr51, and compared it with the othe
run with s* 51 with h50.01 andr51. In Fig. 11 we com-
pare reduced length scalesR* in two cases for three differen
growth exponentsa53/5, 2/3, 3/4~50.6, 0.6667, 0.75!. The
range of time is the same as that of Figs. 6–8. We see th
reduced length scaleR* in two cases agrees with each oth
for a52/3. Thus, the droplet growth we observed isR
;t2/3.

The reason why an isolated droplet is hardly formed in
turbulent state is as follows. In a turbulent state each dro
rapidly changes its position and shape. Therefore, even i
isolated droplet is formed, such a droplet soon touches
another droplet. Once a droplet touches on another one,
coalesce into a single droplet. On the contrary, for the h
viscous fluid mixture, any isolated droplet loses its kine
energy rapidly. Then, isolated droplets seldom meet. The
fore, an isolated droplet lives for a long time in a visco
fluid mixture.

IV. CONCLUDING REMARKS

We have numerically examined the dynamics of the l
stage of the phase separation of fluid mixtures critica
quenched, i.e.,̂c&50, in two dimensions. We considere
two different cases, i.e., the high viscous and the low visc
fluid mixtures. The droplet growth is analyzed by means
variously defined length scales.

For a high viscous liquid mixture, the length scale defin
by the structure function does not agree with other len
scales which are defined by the energy and the interfa
size of droplets. In two dimensions, many isolated dropl
are created during the phase separation@14# and such iso-
lated droplets live for a long time because droplets lose th
kinetic energies rapidly. Therefore, the number of isola
droplets of various sizes accumulates. This leads to the
lation of dynamical scaling with single length scale and
fectively reduces the droplet growth. However, the growth
the largest droplet is close toR;t, which originates from the
interfacial tension. Such a rapid growth is reflected in t
length scale defined by the structure function~18!. This

FIG. 11. Time dependences of reduced length scaleR* given by
Eq. ~30! in the case of low viscosity for two different interfacia
tensionss* 51 and 1/4~in a reduced unit! for assumed three dif-
ferent growth exponenta53/5, 2/3, 3/4.
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means that the interfacial tension is relevant in tw
dimensional high viscous fluid mixture.

For a low viscous fluid mixture we ascertained that t
droplet grows asR;t2/3 up to about a Reynolds numbe
1500. In contrast to the prediction by Grant and Elder@12#,
we cannot find any slowing down in the droplet growth
any destruction of grown droplets. This observation sugg
an indefinite increase in the Reynolds number rather than
saturation. This feature may be explained by the two facts@6#
that the time scale of the energy dissipation in a turbul
state is of the same order as the droplet growth and tha
kinetic energy of turbulent fluid motion is originated fro
the reduction of the interfacial size. Therefore, the kine
energy of turbulence is not sufficient to redestroy any gro
droplet even at high Reynolds numbers. One recent num
cal simulation shows that the low viscous droplet growth
stable even against the thermal noise@25#. Another recent
numerical simulation in three dimsnsions up to the Reyno
number 350 supports the growth lawR;t2/3, but reveals no
saturation of the Reynolds number@26#. At this moment,
therefore, the saturation of the Reynolds number Re s
gested by Grant and Elder has not been observed.

For the low viscous fluid mixture the dynamical scalin
holds. This is because droplets have a kinetic energy s
cient for traveling. Thus an isolated droplet is soon caugh
other droplet, and only small number of isolated dropl
remain in a phase-separating low viscous fluid mixture.

When the Reynolds number increases indefinitely, the
terfacial energye1 and the hydrodynamic energye2 per unit
volume, and the Reynolds number behaves ase1;e2;1/R,
and Re;R1/2, respectively. The evaluation ofe2 is due to the
fact that the characteristic fluid velocity is given byR/t
;t21/3;R21/2. The excess energy of the transient state
always two times larger than that of a corresponding ther
equilibrium state~Re50 ande250). In the inertial range the
velocity field has the same characteristic time as that fo
droplet to grow. Therefore, if a nonequilibrium state with
length scaleR is assumed to be transformed into an equil
rium state~Re50!, it takes a time of the same order as th
for a droplet to grow to a sizeR. In this sense the hydrody
namic transient state of an infinitely large system seem
approach a state different from the thermal equilibrium sta

APPENDIX A: LOCAL EQUILIBRIUM AND
EQUIVALENCE OF KINETIC AND POTENTIAL PARTS

OF FREE ENERGY

Let f be the free energy density:f 5 f K1 f P , wheref K and
f P are given by Eqs.~9! and ~10!, respectively. A complete
equilibrium state is represented bydF/dc50, where F
5* f dr is the total free energy of the system. This gives

2
1

2
¹2c1~c221!c50. ~A1!
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In the late stage of the phase separation the system is no
a complete equilibrium state, but it may be in a local equ
librium state. We mean the local equilibrium state as a st
where certain modes are in an equilibrium state but rema
ing modes are not in an equilibrium state. In the phase se
ration interfaces are clearly formed and the shapes of th
interfaces change in time. Both the thickness of the interfa
and the composition of each phase can be assumed to
independent of time. Therefore, the profile of the interface
determined by the same equation as the equilibrium one.
l be a one-dimensional coordinate perpendicular to the
main interface. Then the order parameter should obey
following one-dimensional differential equation:

2
1

2

]2c

]l 21~c221!c50. ~A2!

By multiplying this equation by]c/]l and integrating byl
we obtain

1

2 S ]c

]l
D 2

5
1

2
~12c2!2, ~A3!

where we have used a boundary conditionc251 at l
56`. Sincel is perpendicular to the interface, we see

e]c/]l 5“c, ~]c/]l !25u“cu2, ~A4!

at the interface, wheree is a unit vector along the axisl . c
may be set constant outside the interfacial region. Therefo
we can assume that Eq.~A4! holds everywhere. Thus Eq
~A3! can be rewritten, using Eq.~A4!, as

1

4
u“cu25

1

4
~12c2!2 ~A5!

or

f K5 f P . ~A6!

Notice that

]2c

]l 2 Þ¹2c, ~A7!

in general even if Eq.~A4! holds, since]e/]l Þ0. There-
fore

m[
1

2
¹2c1~c221!c5

1

2
~¹22]2/]l 2!cÞ0, ~A8!

in general. Here Eq.~A2! is used to derive the last side
Nonvanishing chemical potential~A8! gives a driving force
of the phase separation.
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