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Spinodal decomposition of two-dimensional fluid mixtures: A spectral analysis of droplet growth
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The spinodal decomposition of two-dimensional fluid mixture is studied by numerical simulation. For the
high viscous fluid mixture it has not been evident whether the interfacial tension is relevant to the droplet
growth or not. A length scalR defined by the structure function extracting the effect of the long wavelength
mode justifies a rapid growth close Bo~t, but the length scale energetically defined reveals a much slower
growth R~t%5 wheret is time. This discrepancy represents the violation of the dynamical scaling with single
length scale. The slow gowth of the length scale is attributed to the accumulation of the number of isolated
droplets in phase separating state, whereas the rapid growth represents the relevance of the surface tension as
the driving force in two dimensions. For a low viscous fluid mixture the dynamical scaling is a good assump-
tion with the growth lawR~t%3 up to a very large Reynolds number R&500, which is the limit in the
present simulation.

PACS numbeps): 47.11+j, 64.75+g, 64.60.Cn, 64.60.My

I. INTRODUCTION growth law. Explicitly the above two growth laws are, re-
When a fluid mixture is suddenly quenched into a ther-spectively, written ak~ (o/7)t and R~ (a/p) 3?3,

modynamically unstable state the phase separation takes These growth laws in some cases are examined numeri-
place(see Ref[1] for reviews. If properties of two phases cally and experimentally, but the two-dimensional case is
are nearly symmetric, the two phases mutually interconnecstill under controversy. One of sources of the controversy is
Then Siggia[2] found that the interfacial tension is a rel- the growth mechanism of the high viscous fluid mixture. The
evant driving force for the droplet growth. The pressure dif-linear growth lawR~t is explained by the interfacial tension
ference originating from the interfacial tension and irregularand the energy dissipation which play roles respectively of a
interfacial shape induces convective fluid motions. Such modriving force and a friction to the fluid motion. There is an
tions accelerate the droplet growth. Based on the dynamicadiea that the interfacial tension is irrelevant in two dimen-
scaling hypothesis Siggia obtained a linear growth law ofsions, and the growth laR~t does not hold in two dimen-
dropletR~t for a viscous fluid mixture, wherR andt are,  sjons[7]. In fact there is no clear evidence for the observa-
respectively, the length scale and the time elapsing after thgon of the linear growth law in two dimensions, but
quench. The present author then pointed out that the Reyronlinear growth laws seem to be suitable even for the sym-
nolds number Re increases indefinitely as time proceedsetric quench of high viscous fluid mixtures in two dimen-
[3,4]. Therefore, the dissipation becomes irrelevant as theions[8]. It is, however, to be noted that we cannot conclude
friction to the fluid motion in a long time limit, and a rel- that the interfacial tension is not relevant in two dimensions,
evant friction to the fluid motion must be the inertia which since other systems reveal clear evidence for the relevance of
decelerates the fluid motidib]. We then obtain the growth the interfacial tension in two dimensions. That is, the late
law R~t??in the case of high Reynolds numH@i. Evenin  stage of the coarsening process in nonhydrodynamic systems
this case the dissipation is still needed for droplets to grows governed by the growth laR~t' for conserved order

irreversibly[6]. parametef9] and byR~t*? for nonconserved order param-
The Reynolds number is defined by eter [10]. These growth laws are nothing but originating
o from the interfacial tension. Furthermore the low viscous

__inertial term -1py 0 fluid mixture in two dimensions is known to exhibit a growth

& dissipation term P ' law R~t%3[11] for which the interfacial tension is the driv-

ing force and the inertia act as the friction to the fluid mo-

HereU is a velocity of fluid in a scale lengtR, andp and»  tion. This is also evidence for the relevance of the interfacial
are mass density and shear viscosity, respectively. The cros®nsion in two dimensions.
over fromR~t to R~t%3 must occur at Re 1. However, if The second controversy is about the limit of the Reynolds
7lp is very large, we have a regime of small Re with laRje number in the coarsening process. Let the length sBale
Such a regime actually exists, for instance, for polymergrows ast?. Then the Reynolds number grows as Re
blends, and is treated as an actual late stage of the phaset?®~* [3]. Therefore, Re increases indefinitely aif- 1/2.
separation. We extract such a high viscosity state by settinRecently, Grant and Eldgd 2] presented a doubt to the in-
the mass density zero or the viscosity infinity as usual, butlefinite increase in the Reynolds number. They considered
we do not discuss a crossover between the high viscositthat the Reynolds number would not exceed a value about 10
state and the low viscosity state. or 100, so that the final value of the growth exponambay

Throughout this paper, for the sake of simplicity, we oftennot exceed 1/2 even in low viscous fluid mixture. The state
do not represent physical quantities such as the shear viscost a high Reynolds number is turbulent. Grant and Elder
ity 7, the mass density and the interfacial tensioa, in the  considered that in a turbulent state the grown droplets would
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be destroyed into pieces yielding many isolated spherical w— o . (7)
droplets just like stirred salad dressifig3]. On the contrary

to this suspicion a preceding numerical simulation by theThis makes the interfacial tensienchange into

lattice Boltzmann ga$14] revealed an opposite feature of

the phase-separating domain morphologies. Namely, many o—o*o, ®
isolated spherical droplets are created not in the low viscous. . . . . .
fluid mixture but in the high viscous fluid mixtures, exhibit- SN¢€ the change in the interfacial tension simply corre-
ing a break-down of the dynamical scalifif]. On the con- spondi to the change_ in the energy _scale. The positive con-
trary, the low viscous fluid mixture keeps a mutually inter- stanto® Is a reduced mterfamal tension. .

connected domain structure. Therefore, the understanding of | "€ @Pove set of equations are solved numerically under a

the coarsening mechanism of two-dimensional fluid mixturesditably random initial condition in discrete space of size

is not satisfactory, yet. 1024x1024. Two different cases are studied. One is a very

; ; - . i here we neglect both the left hand side and
In this paper we present a numerical simulation of phas¢/'SCOUS case, w . . .
separation of two-dimensional low and high viscous fluigte first term on the right hand side of Hd). The other is a

mixtures, in order to examine above mentioned problem ery low viscous case, where we sgt0.01. The estimated

using variously defined length scales. We then obtain th jnal Reynolds ““mb?r IS more than 1500.

following conclusions, which are more quantitative than in We calcula;ed variously defined length scaliés. Here,
previous numerical simulationgl) Even for the high vis- we shall mention them. . .

cous fluid mixture the curvature driven growth la~t Thg free. energy densityassociated to the order param-
seems to gorvern the growth of larger droplé®.A seem- eteryis written asf=f+fp, where

ingly delayed domain growth can be explained by consider- 1

ing an accumulation of number of isolated droplets and the f= —|V¢|2, 9)
violation of dynamical scaling with single length sca(8) 4

For a low viscous fluid mixture the length scale grows as

R~t%3 up to extremely large Reynolds number larger than f 53(1_ U2)2 (10)
about 1500, which is the limit of the ability of the present P 4 '

numerical simulation. In the next section the model will be o

presented. Length scales are defined in several ways. In Sdg @ndfp are analogous to the kinetic energy and the poten-

Il numerical results are given and analyzed. In Sec. IV condial energy of the mechanics, respectively. It can be shown
cluding remarks are presented. that the average of two densities are equal to each other if the

interfaces of domains are clearly formed and the system be-

.. MODEL AND PRELIMINARIES comes locally in equilibrium statesee Appendix A

We use the following model, which is a kind of so-called fr(t)~fp(t). (11)
modelH [16]:
[16] If the system is in a local equilibrium state, Eq8) and
Y (10) have nonvanishing value only at interfacial regions and,
i Vvt Viu, (2 as arule, are proportional to the average interfacial size per
unit volumeA:
J
ﬁ_‘f: Vv, 3 (fe(D)~A, (12)
.y (fp(t))~A. (13
_ 2
P =PV VIWVF VNV uy =V, 4) Geometrically A can be given by directly measuring the

length of the interfaces of domains, i.e., by counting lattice
where is the order parameter which takes the value +a@r  points of the discrete space whefér) (r’')<0. Herer and
in equilibrium, ¢ is the total material densitfhumber den- r’ indicate nearest-neighboring lattice points. For a single
sity), v is the velocity field of fluidp is the mass density, and droplet with a radiuR, we find that
nis the shear viscosity: andu 4 are the chemical potentials

and are given by functional derivatives of the free end¥gy RA-L N
The basic form of the chemical potentials are given by A~ R ~R™". (14)
oF 1 2 Hered is the spatial dimensionality. If the dynamical scali
p=ss=" EV v—(1—y?)y, (5) ere |s_1 e spatial dimensionality. e dynamical scaling
¥ holds,A™ " is the length scale of the system just as Bdj).

We calculate energigsy) and(fp), and the average in-
:f: L gbo) 6) terfacial sizeA, independently. Then, we relate these quanti-
Ko™ 5 ~ X0 o ties to respective length scalBss:
where x, is the compressibility and is chosen so that the R~ {(fx(t))" 1, (15
system may be kept to be incompressible. Equati®rcan
be amplified if necessary as R~(fp(t)) "1, (16)
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R~A"L (17

other if the system is in a local equilibrium state. Therefore, ; ;fax’ﬁ)_"“g,,.‘"" A B g A DY,
the local equilibrium state of the systdthe late stage of the DA el ﬁj%ﬂﬁ%ﬁ)
phase separatigrean be justified by comparing these three 2 SR e LW B M
different length scales with each other. " _, s
The other method of evaluating the length scale is to use? a2 wv
the structure function: o 5
—1/m
J S (t)kMdk
R= (18) FIG. 1. Phase separation patterns in case of high viscosity,
' where the Reynolds number is set zero. The system size is
f Su(t)dk 1024x1024, but only 128 points are displayed. The simulation
time of each pattern is 1@Qwith n being the number shown on the
whereS,(t) is the structure function pattern.
S(t)={| (D)%), (19 We observed the same nonscaling morphol¢gge Fig.

1) as those of previous simulatiof$4,15. In Fig. 2 three
and ¢, (t) the fourier component of the order parameger different length scales by Eq€l5), (16), and(17) are com-

The structure function may have asymptotic forms pared. Each length scale is scaled by its own final value. We
find that these three length scales nicely coincide with each
Su(t)~k? (k—0), (20 other. Notice that such a coincidence does not guarantee the

validity of the dynamical scaling but only means that the

S(t)~k 971 (k—ox), (21)  system is in a local equilibrium state. The most striking fea-

ture found from Fig. 2 is that the length sc&t¢hus defined
where §=4 for solid and#=2 for fluid [17]. Therefore, ap- exhibits a small growth exponent near 1/2. We cannot find
propriate values of the powen may be - /<m<d+1. any evidence for the validity of the curvatufer interfacial
However, we have extended the rangevoby introducing a  tension driven and dissipation controlled droplet growth law
cutoff parameter for th& integration in Eq(18). The length R~t. However, we cannot conclude that the curvature
scale defined by Eq18) should not depend on the valuoeif driven droplet growth is absent in two-dimensional viscous

the dynamical scaling holdS,(t) = R(t)?S[kR(t)]. That is, fluid mixture,_ since the_ dynamical scaling with a single
all length scales defined by Eq&L5)—(18) should be the length scale is violated in this case. _
same if the dynamical scaling holds. In Fig. 3 we present the length scale defined by @8)

If the dynamical scaling does not hold, then the length@S a function of for several values ah. In Fig. 4 the growth
scale defined by Eq18) does not coincide with others, be-
cause such a definition as E{.8) gives them dependence 0.00
on R: The behavior of modes with smaller wave number is
characterized by smallem<0, whereas that with larger
wave number is characterized by larger- 0. Thus this pro- -0.75
vides with a kind of a spectral analysis of growth exporeent
(R~t9).

-1.50

Ill. NUMERICAL RESULTS

ox o

A. High viscous case

-2.25 o :potential |
We numerically solved Eq€2)—(6) in the limit of zero o :kinetic
Reynolds numbefRe=0). This case corresponds to setting x : geometry
p=0. By neglecting the inertial terms in E¢}) we have

NVA=V s+ YV . (22)

In [R(O/R(t )]

-3.74

This equation is solved for using the fast Fourier transform -3.74 300 225 -150 075 0.00

[18]. The velocityv thus solved is substituted into Eq®) In [t/t ]

and(3). We reduced the amplitude of the chemical potential m

w and the interfacial tensionr by settinge™ = 1/4 [see Egs. FIG. 2. Time dependences of length scale8—(17) in case of

(7) and(8)]. We used discrete space of size 182024, and  high viscosity. Kinetic, potential, and geometry indicate, respec-
then four different runs are averaged. We used a simple Euively, Egs.(15), (16), and(17). The slope of a straight line is given
ler method to solve the discretized equation. The discret@y the least square method using the data points in the range
time At is 0.02<At=<0.05. Numerical results are insensitive marked by a gray fat line. A weight function inversely proportional
to the value ofAt. to the density of data points is used.
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~0. The symbols indicates data at tinésof the same unit as Fig.
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In [t/t +c]
R~t. Such a rapid growth cannot be detected by other

FIG. 3. Time dependence of length scél®) in the case of high  |ength scales. The strong dependence of the growth expo-
viscosity for several values of powen. Time is slightly shifted, nenta, varying from about 0.5 to about 1, shows the viola-
shift parametec and the growth exponentare determined by the 5 e show the scaling plot of the structure function:
least square method. A weight function inversely proportional to thGR*ZS(k) as a function okR Here the length scale is defined
density of data points is usgd. Each .Iength scale attiimgiven by by Eq.(18) with m=0. Even except near the peak position
Eq. (18) where the summation ovéris cut off atk=5kma. Here ot the fluctuation is intrinsically large, the scaling as-
Kmnax IS the peak position of the structure function. sumption seems to be poorly satisfied.

Here we consider the reason why two types of length
scale exhibit very different growth behaviors. Due to the
poor connectivity in two dimensions, isolated droplets are
created in the process of the phase separation. In a viscous
fluid an isolated droplet rapidly loses its kinetic energy and
then comoves with an outer large droplet which is driven by
the interfacial tensior{see Fig. 1 Therefore, once an iso-

. . . . lated droplet is created such a droplet lives for a long time.
large m and dominates the integration. But for a dlscreuaTherefore, the number of isolated droplets created at various

model, the amplification of small scale structure is meaning—times accumulates. We presented a primitive idea that such

less. This is the reason why we introduced a cutoff. Thean accumulation may lead to an intermittent droplet growth

length scaleR seems to have the rapid growth componentch&mging the growth exponefttd].

Although it is difficult to explain quantitatively the modi-
fication of the growth exponent we can understand the reason
a why the modification of the growth exponent occurs by the
accumulation of the isolated droplets. Let the length scale of
largest droplets bR . It is assumed that largest droplets are
interconnected. Therefore, thi®, can be assumed to grow
fast as~t. The successive accumulation of the number of
isolated droplets gives rise to a non-self-similar droplet mor-
phology. The lower bound of the length scétg is the av-
erage size of initially created isolated droplets, which grows
as~t? with a=1/2 if the thermal fluctuation is effective. If
the thermal fluctuation is not effective, tharis smaller than
that. Let us consider a simple geometric length sc¢al®.

The total interfacial size should be larger tHa§ * because
3 0 3 of the successive accumulation of isolated droplets. Let the
m total size of the interface bRS ', with d<D<d+1. The

. . . . . . 71 d _ 7|
FIG. 4. The growth exponerd, corresponding to Fig. 3 as a interfacial size per unit volume is given RS /RS =Ry,
function of m. For closed circles the summation ovein Eq. (18 ~ Wherel=d+1—D. For example, ifD=d+1/2, then we
is cut off atk=5k,, Whereas for open circles no cutoff is used. have | =1/2. We then observi®Y? (=R},) as the simple

The horizontal line indicates the growth exponent value of Fig. 2. geometric length scalél?7). Therefore, even if the largest

exponents are shown as a functionrof To calculate the
length scale using Eq18) we used a cutoff for thd inte-
gration. The cutoff isk,= 5k, With K. being the wave
number at whichS,(t) has a peak. In Fig. 4 we compared
two cases with the cutoff and without the cutoff. For large
positive values ofm these two cases give different results
from each other. This is becauSgat largek is amplified for

5/6 -

2/3

172 -

113+
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FIG. 6. Phase separation patterns in case of low viscosity. The /.,//e"'. Fj
system size is 10241024, but only 128 points are displayed. The | / o
simulation time of each pattern is B0with n being the number 1 o] ./.(' 1.0
e
shown on the pattern. 5 o
29 Pz
droplets grow rapidly aRy~t, the simple geometric length 13 0.0
scale defined by Eq17) behaves aR~tY? (=t).
The accumulation of isolated droplets would occur more 0.0 1.0 2.0 3.0 4.0
hardly in three dimensions than in two dimensions, because In [t/t,+c]

of a rich connectivity among droplets in three dimensions.
Therefore the dynamical scaling with single length scale may FIG. 8. Time dependence of length scéled) in case of low
be more appropriate for the three dimensional viscous fluidiscosity (see the caption of Fig. 3 for the explanation
mixture [20].
terized by a single growth laR~t%° as expected. It is also

B. Low viscous case found that the system is in a local equilibrium state. In Fig. 8
the length scale defined by using the structure functi@),
is shown for several values aofi as functions ot. In Fig. 9
the growth exponent thus obtained is shown as a function of
m. It can be found that the growth of the length scale hardly
depends om. This means that the scaling holds in low vis-
Tous case. The growth exponent in Fig. 9 coincides with that
in Fig. 7: all length scales obey the same growth IBw
~123 In Fig. 10 we show the scaling plot of the structure
%ﬁhction: R™25(k,t) as a function ofkR Here the length
scale is defined by Eq18) with m~0. The scaling assump-
tlon seems to be better satisfied than the high viscosity case

For a low viscous case, we set1 and»=v=0.01. The
reduced interfacial tension is set @=1. We numerically
solved Egs. (2)—(6) in discrete space-time of a size
1024x1024, and then four different runs are averaged. W

The discrete time intervalt is 0.0125<At<0.025. Nu
merical results are insensitive to the valueAdf The same
analyses as those for the high viscous case are shown in Fi
6-8. In Fig. 6 the coarsening patterns are shown. In Fig.
the time-dependences of length scales defined by Egs-
(17) are shown. Three length scales are scaled by their ow

Of Fi ig. 5.
final values. The growths of these length scales are chara®: We evaluated the final value of the Reynolds number Re
——— (1). Herep=1 and%=0.01 in the present simulatiol. is an
0.00 instantaneous velocity of fluid, which may not be smaller
-0.75
a
=g 1L
<
& -1.50
Gy 5/6
Z
I; -2.25 Fy o :potential || 2/3
— o : kinetic
3.00 x :geometry B 12
1/3 L
3.74 f
| L L
374 300 -225  -150  -075 0.0 3 0 3
In [t/t_]

FIG. 9. The growth exponerd, corresponding to Fig. 8 as a
FIG. 7. Time dependences of length scdlE5—(17) in case of  function of m (see the caption of Fig. 4 for the explanatioihe
low viscosity (see the caption of Fig. 2 for the explanation horizontal line indicates the growth exponent value of Fig. 7.
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5 5 microscopic scales. As an example, consider a linearlized
= e 0.0 hydrodynamic equation and assume to make a suitable
g Al B coarse graining in space. It is evident that a coarse-grained
> GWV% s cell size is not relevant to the fluid motion with a length scale
s ¥ : 10 larger than the coarse-grained lendthis means that the
.‘_g 3 @O 80 o 15 Reynolds number should be independent of the coarse-
= 5 g g‘; grained cell size Since the Reynolds number R&?/(vt)

g Ll % % S 30 contains a microscopic quantity=7/p, it may exhibit small

= o o 35 scales. For the present simulation we have-R@/r )Y/ us-

o) 1 © 40 ing R~t%3. Herer is a constant representing a length scale,

o1 P and takes a very small value10 # in the late stage of the

¢ present simulation. This must be a source of the criticism by
0 | Grant and Elder. But such a small length scale should not be

attributed to the discreteness of the macroscopic model. It is
more important to find out whether macroscopic fluid mo-
tions are closed within the discrete model or not. If motions
FIG. 10. Scaling plot of the structure functi®{k) in case of  are closed within the discrete model, then the Reynolds num-

low viscosity. The symbols indicates data at timsof the same ~ ber can be safely evaluated by Ed$) or (23). For this

unit as Fig. 6. purpose we shall examine the length scale where the energy
is dissipated and the corresponding fluid motion is frozen in.
thandR(t)/dt~R/t, becausa R/dt is not a true velocity of We first consider the energy dissipation under an extreme
fluid, but averaged one. Therefore, we may have condition. We assume that the kinetic energy supplied from
) the surface tension at the length scBl&s dissipated only at
Re>R— 23 a small scalex, where the dissipation would dominate the
vt inertial motion.\ can be evaluated by balancing the energy

dissipation with the energy supply from the surface tension.
In our simulation the size of a cell of the discretized space isThe supplied surface energy ¢d(tR) per unit volume and

set to be 1, and th&?v is calculated simply as unit time. The energy dissipation per unit volume per unit
time is 0.5)| Vv|?>~ 5/ 2. Herer~\?/v is the characteristic
VAV—V(X+ 1Y) +V(X—1y) +Vv(X,y+ 1) +Vv(x,y—1) time of the dissipative motion at the length scale The

balance between the energy supply and the energy dissipa-
tion gives o/(tR)~ /72, which gives ?~tyR/o or \*

.3 i 2
wherex andy indicate positions in the discrete space. The, P” Rt/a. Using the Reynolds number R&/(»1), and
: R : C the growth lawR~ (a/p)*3?? we find that
unit of time is 1. The maximum computation time is 2000 P '
and the final average droplet size is about 170. By substitut- 38
ing approximate valuest~20 andR~ 170, we find that the N~ (ﬁ) p3/4R5/8 (25)
final Reynolds number calculated by HEJ) is o

—4v(Xx,y),

Re~1500. (24) ~(Re) ¥R, (26)

This value is about 15 times larger than the critical valueln the final stage of the present simulation we have0.7.
predicted by Grant and Eld¢t2]. This value is somewhat smaller than the lattice spacing 1. If
Grant and Elder criticized that the discretized model maythe minimum length scale is relevant to the evaluation of the
not give a correct value of the Reynolds number. They sugReynolds number, Eq26) should give R&R*® (A=1).
gested that the minimum spatial length scale, i.e., the latticEven under this restriction we have a Reynolds number
spacing, should be relevant to the Reynolds number. HowRe~1000 in the final stage of the simulation, which is still
ever, it was not evident how the microscopic scale is relevantarge. If we use larger kinetic viscosiiy=0.1, the final Rey-
to the evaluation of the macroscopic Reynolds number. Heraolds number is about 150, and the length sealel. Even
we shall show that the microscopic length scale is not relin this case the coarseing process is almost the same as that
evant to the evaluation of the Reynolds number if we use dor »=0.01, in the inertial rangéRe>1). We therefore con-
suitable phenomenological model. This can be done by findsider that the macroscopic behavior is hardly affected by the
ing out how microscopic scales comes out in the phenommicroscopic detailes of the model equation at least in the
enological model. In the phenomenological hydrodynamigoresent simulation.
equation(4) a microscopic quantity; is treated as a param- Equation (25) or (26) is an extreme case. Even in the
eter. As is well known in standard statistical mechanics, sucinertial range(Re>1) the energy is dissipated. As a zeroth
a parameter, which puts implicit microscopic space-timeapproximation the hydrodynamic equation can be written as
scales into the model, is produced by averaging out the mipdv/dt~F, whereF represents the last two terms on the
croscopic degrees of freedom of the mechanical equatiomight hand side of the hydrodynamic equati@). Substitut-
Therefore, concerning to the phenomenological equation, nimg the solution of this approximate equation; Ft/p, into
fine space-time region for averaged-out microscopic motiorthe second term on the right hand side of E4). we can
is necessary and any macroscopic motion is free from suclvaluate the energy dissipation in the inertial range. This can
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be conveniently done in the Fourier space. ketbe the 4 ] #5351
upper bound of the wave number of the energy dissipation. s H fa”y
Then the energy dissipation can be evaluated as E — (1)-25 y {;;';i@’aev &
Sk, K (|F?)t?p 2. Since the force terrf¥ is not a con- F3 V5 o #
served quantity and is of the order af/(R)/R, we find that £ e
(IF®~(|Fg®)~0?R2 (=0?RI"4). Then the energy dis- n: o e » 3R
sipation in the inertial range is evaluatedgsrtk?)?/(pR)? ~ 2 o (2]

o
in two dimensions. By balancing thus evaluated energy dis- = o r':aﬁ

sipation with the energy supply/(Rt) and using the rela- o7 e
tions R~ (a/p) 3% and Re-R?/(vt) we obtain[21] 1 /V
1/8 z/
iN(B) V1/4R7/8 (27) . g:/
k/ g 0 1 2 3 4
~(Re)~ ¥R, (289) 0t ¢, ctitay unity
In the final stage of the present simulation we obtkjn FIG. 11. Time dependences of reduced length sRalgiven by

~1/30. The corresponding value of the length scale is IargeEq- (_30) in the case of _Iow viscosity for two different interfac_ial
than the lattice spacing 1. It is also larger tharas expected. tensionse* =1 and 1/4(in a reduced unjtfor assumed three dif-
From the above evaluations we may conclude that thd€rent growth exponera=3/5, 2/3, 3/4.
energy dissipation is done in scales larger than or compa-
rable to the lattice spacing at least in the late stage of the 0.25 with»=0.01 andp=1, and compared it with the other
present simulation. Nevertheless, we did not observe anftn with * =1 with =0.01 andp=1. In Fig. 11 we com-
symptom of the break up of growing droplets nor the slow-pare reduced length scalB$ in two cases for three different
ing down of the droplet growth. Grant and Elddr2] sup-  growth exponenta=3/5, 2/3, 3/4(=0.6, 0.6667, 0.76 The
posed that the droplet would break up into pieces at largéange of time is the same as that of Figs. 6-8. We see that a
Reynolds number for which the system becomes turbulente€duced length scale* in two cases agrees with each other
This is true if the fluid is externally forced to a turbulent statefor a=2/3. Thus, the droplet growth we observed Rs
[22]. However, in the present case the turbulence is self~t?3.
induced due to the release of the interfacial energy. The The reason why an isolated droplet is hardly formed in the
present author once examined the stability of the dropleturbulent state is as follows. In a turbulent state each droplet
growth in such a self-induced turbulent sta6d. Following  rapidly changes its position and shape. Therefore, even if an
this examination droplets are not destroyed even by the turisolated droplet is formed, such a droplet soon touches on
bulent motion, for two reasons. One reason is that the turbuanother droplet. Once a droplet touches on another one, they
lent kinetic energy is not supplied externally as ordinary hy-coalesce into a single droplet. On the contrary, for the high
drodynamic turbulence is, but supplied by the reduction oiviscous fluid mixture, any isolated droplet loses its kinetic
the interfacial siz¢§23]. Therefore, this energy is not large energy rapidly. Then, isolated droplets seldom meet. There-
enough to redestroy droplets. The second reason is that tiiere, an isolated droplet lives for a long time in a viscous
characteristic time of the energy dissipation in the turbulenfluid mixture.
state is of the same order as that of the droplet growth.
Therefore, the kinetic energy of the turbulent motion is not
accumulated during the growth of the droplet. If, however,
droplet interfaces are deformed or if droplets are redestroyed We have numerically examined the dynamics of the late
due to the turbulent motion, then the growth law would bestage of the phase separation of fluid mixtures critically
modified from R~t?3 to R~t¥° [R~ (o 5/p?)Y*%®] [24].  quenched, i.e.{y)»=0, in two dimensions. We considered
But the growth law observed for the low viscous fluid mix- two different cases, i.e., the high viscous and the low viscous
ture is nott®® type butt?® type. We examined this in the fluid mixtures. The droplet growth is analyzed by means of
following way. If the droplet growth is not liké?, then a  variously defined length scales.
dimensional analysis provides with another growth law with  For a high viscous liquid mixture, the length scale defined

IV. CONCLUDING REMARKS

an arbitrary growth exponet[24]: by the structure function does not agree with other length
scales which are defined by the energy and the interfacial

R~ g2 tpa ty? 7%, (29 size of droplets. In two dimensions, many isolated droplets

i are created during the phase separafibfi and such iso-

We define a reduced length scae lated droplets live for a long time because droplets lose their
kinetic energies rapidly. Therefore, the number of isolated

R* — R (30) droplets of various sizes accumulates. This leads to the vio-
gzaflpa*1n2*3a' lation of dynamical scaling with single length scale and ef-

fectively reduces the droplet growth. However, the growth of
R* does not depend om, 7, or p, if a correct exponemis  the largest droplet is close ®~t, which originates from the
given. We compared two different runs changing the interfainterfacial tension. Such a rapid growth is reflected in the
cial tension according to Eq7) or (8), i.e., one run foro™* length scale defined by the structure functi@B). This
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means that the interfacial tension is relevant in two-In the late stage of the phase separation the system is not in
dimensional high viscous fluid mixture. a complete equilibrium state, but it may be in a local equi-
For a low viscous fluid mixture we ascertained that thelibrium state. We mean the local equilibrium state as a state
droplet grows asR~t?® up to about a Reynolds number where certain modes are in an equilibrium state but remain-
1500. In contrast to the prediction by Grant and EldE?], ing modes are not in an equilibrium state. In the phase sepa-
we cannot find any slowing down in the droplet growth orration interfaces are clearly formed and the shapes of these
any destruction of grown droplets. This observation suggestsiterfaces change in time. Both the thickness of the interface
an indefinite increase in the Reynolds number rather than thend the composition of each phase can be assumed to be
saturation. This feature may be explained by the two fi@ts  independent of time. Therefore, the profile of the interface is
that the time scale of the energy dissipation in a turbulentetermined by the same equation as the equilibrium one. Let
state is of the same order as the droplet growth and that thé be a one-dimensional coordinate perpendicular to the do-
kinetic energy of turbulent fluid motion is originated from main interface. Then the order parameter should obey the
the reduction of the interfacial size. Therefore, the kineticfollowing one-dimensional differential equation:
energy of turbulence is not sufficient to redestroy any grown

. : 1 (92
droplet even at high Reynolds numbers. One recent numeri o+ —lz//+(¢2—1)l/f: 0. (A2)
cal simulation shows that the low viscous droplet growth is 2 9/

stable even against the thermal noj&&]. Another recent
numerical simulation in three dimsnsions up to the Reynold8y multiplying this equation by/d/” and integrating by”
number 350 supports the growth &t but reveals no we obtain
saturation of the Reynolds numbg26]. At this moment,
therefore, the saturation of the Reynolds number Re sug- 1(ay\? 1 22
gested by Grant and Elder has not been observed. 2\ a9/ :E(l_ )% (A3)

For the low viscous fluid mixture the dynamical scaling
holds. This is because droplets have a kinetic energy suffivhere we have used a boundary conditiqyﬁ:l at /
cient for traveling. Thus an isolated droplet is soon caught by= +. Since/ is perpendicular to the interface, we see
other droplet, and only small number of isolated droplets
remain in a phase-separating low viscous fluid mixture. edpla/ =V, (dplar)?=|V |2 (A4)

When the Reynolds number increases indefinitely, the in-
terfacial energy; and the hydrodynamic energy per unit  at the interface, whereis a unit vector along the axis. ¢
volume, and the Reynolds number behavegase,~ 1/R, may be set constant outside the interfacial region. Therefore,
and Re-RY?, respectively. The evaluation ef is due to the ~we can assume that E¢A4) holds everywhere. Thus Eqg.
fact that the characteristic fluid velocity is given W/t  (A3) can be rewritten, using EG4A4), as
~t"13~R712 The excess energy of the transient state is
always two times larger than that of a corresponding thermal E|Vl//|2:£(1— Y22 (A5)
equilibrium stat§Re=0 ande,=0). In the inertial range the 4 4
velocity field has the same characteristic time as that for a
droplet to grow. Therefore, if a nonequilibrium state with aor
length scaleR is assumed to be transformed into an equilib-
rium state(Re=0), it takes a time of the same order as that fk="Fp. (AB)
for a droplet to grow to a sizR. In this sense the hydrody- _
namic transient state of an infinitely large system seems to Notice that
approach a state different from the thermal equilibrium state. pr
— # V2, (A7)
APPENDIX A: LOCAL EQUILIBRIUM AND as
EQUIVALENCE OF KINETIC AND POTENTIAL PARTS

OF EREE ENERGY in general even if Eq(A4) holds, sincede/d/ #0. There-

fore
Letf be the free energy densitfy=f + fp, wheref and
fp are given by Eqgs(9) and (10), respectively. A complete
equilibrium state is represented h$F/S¢=0, where F M
= [fdr is the total free energy of the system. This gives

1
VErt (2= 1) =5 (V2= %9/ y#0, (A8)

N| -

in general. Here Eq(A2) is used to derive the last side.

2 2 _ onvanishing chemical potentiéh8) gives a driving force
- = + - =0. ;
2V y(¥=1)¢=0 (AL) of the phase separation.
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